top of page

Fluid Mechanics lectures:

​

Books:

 

1. Physical hydrodynamics: Oxford publications

     4-Authors: E. Guyon, J.P Hulin, L. Petit, C.D Mitescu,

​

2. Fluid Mechanics : Elsevier publications.

    Authors: P. Kundu, I.Cohen, D. Dowling.

​

3. David Tong Lectures

    http://www.damtp.cam.ac.uk/user/tong/fluids.html

​

​

Week -1

Lec-1         Lec-2A       Lec-2B       Lec 3

            Fluid mech applications, examples fluid flow.

                 Fluid Dyn. Laws :  just a solution of 3 PDEs ?!!?

                Fluid element, Knudsen number, Mathematical preliminaries

                Viscous vs. convective transport of mass, momentum,energy              

Week-2

Lec-1        Lec-2        Lec-3         Lec4

          Kinematics:  Eulerian/Lagrange reference frames

https://www.youtube.com/watch?v=3OYOfuWXwy8&t=632s

​

              Stream-Path-Streak lines.

              Velocity grad tensor =>

  ( symmetric + anti-symmetric -> vol. change + deviatoric + rotational)

              Large and small deformation,

              Conservation of mass eqn., incompressible flow (div. V=0)

              Stream function for various kinds of flow.

​

Week-3 (Euler flows)

Lec-1  Lec-2      Lec3

Mass conservation equation.

Momentum Conservation equation, Momentum current

Euler equation for inviscid flows.

Bernoullis eqn for ideal flows. What is vorticity ? Vorticity equation.

Do all circular flow have vorticity ?

When  are Euler flows valid or relevant ?

Does Planar shear flow or Couette flow have vorticity ?

Velocity potential for planar/ source/ sink/ dipole flows.

Vortex flow, Flow around (spinning) cylinder or sphere, Magnus force.

​

QUIZ on 14th Sept, 2022

​

Week-4 (mass and momentum eqn: Navier Stokes)

  Lec-1      Lec-2     

Stress tensor properties,

Expressing stress tensor in terms of  : pressure terms +

         deviatoric + dilation  parts of the vel. gradient tensor

Navier Stokes equation

Properties of viscosity are different for liquid and for gas.

​

https://www.whoi.edu/cms/files/adoucette/2006/4/Pedlosky_12.800_Ch3%2706_9199.pdf

section 3.6 onwards

​

https://web.mit.edu/2.25/www/pdf/viscous_flow_eqn.pdf

​

Week-5  ( Navier Stokes to Stokes, Reynolds number)

Lec-1        Lec-2      

Lec1: Bernouli eqn valid for STEADY (no explicit time dependence) of  flows along streamline.

​

Brief intro to boundary layer,

Momentum diffusion and feel of  other numbers.

​

Week-6  (Incompressible flows and Boussinesq apprx, microscopic origins of viscosity and conductivity, dimensionaless numbers characterizing flows)

Lec-1        Lec-2        Lec-3         Lec4

​

Week-7  (low Reynolds number flows)

Lec-1        Lec-2        Lec-3         Lec4

​

Week-8  (compressible flow)

Lec-1        Lec-2        Lec-3         Lec4

​

bottom of page