top of page
Physics of Life
Soft and Living Matter Group
​
​
Accepted/ to be submitted:
​
37. Topology induced organization of polymers in spherical confinement. to be submitted
Authors: Indrakanty S.S, Shridhar Shanbag, Shreerang Pande, Debarshi Mitra, Apratim Chatterji.
​
36. Elastic response of sponges made of nano-rods trapped in polymer gels. to be submitted
Authors: Sanjay Bhandarkar, Somesh Kurahatti, K. Guruswamy, Apratim Chatterji.
​
35. Active matter hydrodynamics induce clustering of passive particles. to be submitted.
Authors: Adrian Pinto, Nishant Baruah, Tejal Agarwal, Vijay Chikkadi, Apratim Chatterji
​
34. Emergent Helicity in non-uniformly charged, semiflexible polymers. submitted..
Authors: Debarshi Mitra, Apratim Chatterji.
​
33: The mechanism of E.coli chromosome organization in fast growth conditions. submitted.
Authors: Shreerang Pande, Debarshi Mitra, Apratim Chatterji*.
​
Published Articles:
​
32. DNA-polymer architecture orchestrates the segregation and spatio-temporal organization of E. coli chromosomes during replication in slow growth.
Authors: Debarshi Mitra*, Shreerang Pande, Apratim Chatterji.
​
Soft Matter 18, 5615-5631 (2022) https://doi.org/10.1039/D2SM00734G
​
31.Topology-driven spatial organization of ring polymers under confinement.
Phys. Rev. E, 106, 054502 (2022). https://doi.org/10.1103/PhysRevE.106.054502
Authors: Debarshi Mitra, Shreerang Pande, Apratim Chatterji*.
​
30. Elastic Response of polymer-nanoparticle sponges: Microscopic model to investigate large deformations. Phys Rev. Materials: 6, 025604 (2022).
​
https://doi.org/10.11403/PhysRevMaterials.6.02560
​
Authors: Anish Sukumaran, N. Bacchar*, Apratim Chatterji*, K. Guruswamy.
​
29. Rigidity Dictates Spontaneous Helix Formation of Thermoresponsive Colloidal Chains in Poor Solvent : ACS-Nano- 15, 19702-1971 (2021).
https://pubs.acs.org/doi/pdf/10.1021/acsnano.1c07048
Authors: B. Biwas, Debarshi Mitra, Fayis K, S. Bhat, Apratim Chatterji*,Guruswamy K*.
​
28. Spontaneous helix formation in semiflexible polymers without confinement effects.
Authors: Debarshi Mitra and Apratim Chatterji. arXiv:2002.04953
J.Phys.:Condens.Matter, 33, 044001(2020). https://doi.org/10.1088/1361-648X/abbc32
​
27. Differential tissue stiffness of body column facilitates the locomotion of hydra on solid substrates. J. of Expt. Biology, 223 (20): jeb232702 (2020).
https://jeb.biologists.org/content/early/2020/09/21/jeb.232702
​
Authors: Suyash Naik, Manu Unni, Devanshu Sinha, Shatruhan Singh Rajput, P. Chandramouli Reddy, Elena Kartvelishvily, Inna Solomonov, Irit Sagi, Apratim Chatterji, Shivprasad Patil and Sanjeev Galande.
​
​
26. Bacterial chromosome organization II: few special cross-links, cell confinement, and molecular crowders play the pivotal roles.
Authors: Tejal Agarwal, G. P. Manjunath, Farhat Habib, Apratim Chatterji
arXiv:1808.09400: J. Chem. Phys. Vol. 150, 144909 (2019)
https://aip.scitation.org/doi/10.1063/1.5058217
​
25. Bacterial chromosome organization I: crucial role of release of topological constraints and molecular crowders Authors Tejal Agarwal, G. P. Manjunath, Farhat Habib, Apratim Chatterji
arXiv:1808.09396 J. Chem.Phys. Vol. 150, 144908 (2019)
https://aip.scitation.org/doi/10.1063/1.5058214
​
24. Heirarchical and synergistic self-assembly in composites of model Wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies.
Authors: Shaikh Mubeena and Apratim Chatterji.
arXiv: 1801.06933 Eur. Phys. J. E Vol. 42: 50 (2019)
​
23. Self Assembly of Linear Semiflexible polymeric chain using spherically symmetric potentials.
Alex Abraham, Apratim Chatterji, J.Chem.Phys.148, 154901 (2018).
​
22. Origin of spatial organization of DNA-polymer in bacterial chromosomes.
Tejal Agarwal, G.P. Manjunath, F. Habib, Apratim Chatterji, Europhys. Lett., 121, 18004 (2018).
​
21. Role of special cross-links in structure formation of bacterial DNA polymer
Tejal Agarwal, G.P. Manjunath, F. Habib, P.L. Vaddavalli, Apratim Chatterji,
J. Phys.: Condens. Matter 30, 034003 (2018).
​
20. Network formation and gelation in Telechelic star polymers.
Indrajit Wadgaonkar, Apratim Chatterji, J.Chem Phys., 146, pp 084906 (2017).
​
19. Star Telechelic Poly(L-lactide) Ionomers.
Amruta Kulkarni, Ashish Lele, S. Sivaram, P. Rajamohanan, S. Velankar, Apratim Chatterji Macromolecules- 48 (18), pp 6580–6588 (2015).
​
18. Heirarchical Self Assembly: Self Organized nano-structures in a nematically ordered matrix of self assembled polymeric chains.
Sk. Mubeena Bano and Apratim Chatterji. Phys. Rev. E, Volume 91, 032602 (2015).
​
17. Self-assembly of monodisperse CdS nanocylinders with an axial pore.
J. Kiruthiga and Apratim Chatterji. Phys. Rev. E, Volume 89, 022304, (2014).
16. Mesoscale Hydrodynamic Simulations of Particle Suspensions Under Shear Flow.
R.G. Winkler, S.P. Singh, C-C Huang, D.A. Fedosov, K. Mussawisade, A. Chatterji, M. Ripoll, G. Gompper. Euro. Phys. J. Special Topics, Volume 222, 2773 (2013).
15. Dynamical and Rheological behaviour of Ultrasoft Colloids under Shear Flow.
Sunil P. Singh, Apratim Chatterji, Gerhard Gompper and Roland G. Winkler. Macromolecules, Volume 46, 8026 (2013).
14. Steady State Dynamics of Colloids/Polymers in Uniaxial Extensional Flow.
Dhairyashil Ghatage and Apratim Chatterji. Phys. Rev. E, Volume 88, 043303 (2013).
13. Nanochannel induced advection combined with reaction diffusion dynamics of reacting ions leads to self assembly of ordered cylindrical nanostructures.
J. Kiruthiga and Apratim Chatterji. J. Chem. Phys., Volume 138, p 024905, (2013).
12. Conformational and dynamical properties of ultra-soft colloids in semi-dilute solution in shear flow.
S.P.Singh, D.A. Fedosov, A. Chatterji, R.G. Winkler, G. Gompper. Journal of Physics: Condensed Matter, Volume 24, p 464103, (2012).
11. Semidilute solutions of ultrasoft colloids in shear flow.
D.A. Fedosov, S.P. Singh, A. Chatterji, R.G. Winkler, G. Gompper. Soft Matter, Volume 8, pp 4109- 4120 (2012).
10. The role of effective charges in the electrophoresis of Highly Charged colloids.
Apratim Chatterji and Juergen Horbach. Journal of Physics: Condensed matter, Volume 22, p 49410 (2010).
9. Epitaxial growth in dislocation free strained asymmetric alloy films.
R.C. Desai, H. Kim, A. Chatterji, D. Ngai, S. Chen, and N. Yang. Physical Review B, Volume 81, pp 235301 (2010).
8. Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations.
C.C. Huang, A. Chatterji, G. Sutmann, G. Gompper, R.G. Winkler. 2010 J. Phys.: Condens. Matter 30 034003.
7. Electrophoretic properties of Highly Charged Colloids. (Selected for reproduction in February 15, 2007 issue of Virtual Journal of Biological Physics Research)
Apratim Chatterji and Jürgen Horbach. J. Chem. Phys., Volume 126, 064907 (2007).
6. Qualitative characterizations of effective interactions of charged spheres on different levels of organization using Alexanders charge renormalization as reference.
L. Shapran, M. Medebach, P. Wette, P. Palberg, H.J. Schoepe, J. Horbach, T. Kreer and A.Chatterji Colloids and Surfaces A, Volume 270-271, pp 220-225 (2005).
5. Non-linear effects in charge stabilized colloidal suspensions.
Torsten Kreer, Jürgen Horbach and Apratim Chatterji. Phys. Rev. E, Volume 74, 021401 (2006).
4. Electrophoretic properties of charged colloidal suspensions: Application of a hybrid MD/LB method.
Apratim Chatterji and Juergen Horbach. Mathematics and Computers in Simulations, Volume 72 pp-98 102 (2006).
3. Combining Molecular Dynamics with Lattice Boltzmann: A Hybrid Method for the Simulation of (Charged) Colloidal Systems.
Apratim Chatterji and Juergen Horbach. Journal of Chemical Physics, Volume 122, 184903 (2005).
​
2. Statistical Mechanics of Semiflexible Equilibrium Polymers.
Apratim Chatterji and Rahul Pandit. Journal of Statistical Physics, Volume 110, Nos 3-6, pp-1219-1248 (2003).
1. Semiflexible Equilibrium Polymers: A Self Assembling Molecular Model.
Apratim Chatterji and Rahul Pandit. Europhys. Lett., Volume 54, pp 213-219, 2001.
​
bottom of page